183 research outputs found

    Tidal pressurization of the ocean cavity near an Antarctic ice shelf grounding line

    Get PDF
    Mass loss from the Antarctic ice sheet is sensitive to conditions in ice shelf grounding zones, the transition between grounded and floating ice. To observe tidal dynamics in the grounding zone, we moored an ocean pressure sensor to Ross Ice Shelf, recording data for 54 days. In this region the ice shelf is brought out of hydrostatic equilibrium by the flexural rigidity of ice, yet we found that tidal pressure variations at a constant geopotential surface were similar within and outside of the grounding zone. This implies that the grounding zone ocean cavity was overpressurized at high tide and underpressurized at low tide by up to 10 kPa with respect to glaciostatic pressure at the ice shelf base. Phase lags between ocean pressure and vertical ice shelf motion were tens of minutes for diurnal and semidiurnal tides, an effect that has not been incorporated into ocean models of tidal currents below ice shelves. These tidal pressure variations may affect the production and export of meltwater in the subglacial environment and may increase basal crevasse heights in the grounding zone by several meters, according to linear elastic fracture mechanics. We find anomalously high tidal energy loss at the K1 constituent in the grounding zone and hypothesize that this could be explained by seawater injection into the subglacial environment at high tide or internal tide generation through interactions with topography. These observations lay the foundation for improved representation of the grounding zone and its tidal dynamics in ocean circulation models of sub–ice shelf cavities

    Ocean stratification and low melt rates at the Ross Ice Shelf grounding zone

    Get PDF
    Ocean‐driven melting of ice shelves is a primary mechanism for ice loss from Antarctica. However, due to the difficulty in accessing the sub‐ice shelf ocean cavity, the relationship between ice shelf melting and ocean conditions is poorly understood, particularly near the grounding zone, where the ice transitions from grounded to floating. We present the first borehole oceanographic observations from the grounding zone of the Ross Ice Shelf, Antarctica's largest ice shelf by area. Contrary to predictions that tidal currents near grounding zones mix the water column, we found that Ross Ice Shelf waters were vertically stratified. Current velocities at middepth in the ocean cavity did not change significantly over measurement periods at two different parts of the tidal cycle. The observed stratification resulted in low melt rates near this portion of the grounding zone, inferred from phase‐sensitive radar observations. These melt rates were generally <10 cm/year, which is lower than average for the Ross Ice Shelf (∼20 cm/year). Melt rates may be higher at portions of the grounding zone that experience higher subglacial discharge or stronger tidal mixing. Stratification in the cavity at the borehole site was prone to diffusive convection as a result of ice shelf melting. Since diffusive convection influences vertical heat and salt fluxes differently than shear‐driven turbulence, this process may affect ice shelf melting and merits further consideration in ocean models of sub‐ice shelf circulation

    Optimal constraint-based decision tree induction from itemset lattices

    No full text
    International audienceIn this article we show that there is a strong connection between decision tree learning and local pattern mining. This connection allows us to solve the computationally hard problem of finding optimal decision trees in a wide range of applications by post-processing a set of patterns: we use local patterns to construct a global model. We exploit the connection between constraints in pattern mining and constraints in decision tree induction to develop a framework for categorizing decision tree mining constraints. This framework allows us to determine which model constraints can be pushed deeply into the pattern mining process, and allows us to improve the state-of-the-art of optimal decision tree induction

    Validation of a blood protein signature for non-small cell lung cancer

    Get PDF
    Background: CT screening for lung cancer is effective in reducing mortality, but there are areas of concern, including a positive predictive value of 4% and development of interval cancers. A blood test that could manage these limitations would be useful, but development of such tests has been impaired by variations in blood collection that may lead to poor reproducibility across populations. Results: Blood-based proteomic profiles were generated with SOMAscan technology, which measured 1033 proteins. First, preanalytic variability was evaluated with Sample Mapping Vectors (SMV), which are panels of proteins that detect confounders in protein levels related to sample collection. A subset of well collected serum samples not influenced by preanalytic variability was selected for discovery of lung cancer biomarkers. The impact of sample collection variation on these candidate markers was tested in the subset of samples with higher SMV scores so that the most robust markers could be used to create disease classifiers. The discovery sample set (n = 363) was from a multi-center study of 94 non-small cell lung cancer (NSCLC) cases and 269 long-term smokers and benign pulmonary nodule controls. The analysis resulted in a 7-marker panel with an AUC of 0.85 for all cases (68% adenocarcinoma, 32% squamous) and an AUC of 0.93 for squamous cell carcinoma in particular. This panel was validated by making blinded predictions in two independent cohorts (n = 138 in the first validation and n = 135 in the second). The model was recalibrated for a panel format prior to unblinding the second cohort. The AUCs overall were 0.81 and 0.77, and for squamous cell tumors alone were 0.89 and 0.87. The estimated negative predictive value for a 15% disease prevalence was 93% overall and 99% for squamous lung tumors. The proteins in the classifier function in destruction of the extracellular matrix, metabolic homeostasis and inflammation. Conclusions: Selecting biomarkers resistant to sample processing variation led to robust lung cancer biomarkers that performed consistently in independent validations. They form a sensitive signature for detection of lung cancer, especially squamous cell histology. This non-invasive test could be used to improve the positive predictive value of CT screening, with the potential to avoid invasive evaluation of nonmalignant pulmonary nodules

    A Novel Enediynyl Peptide Inhibitor of Furin That Blocks Processing of proPDGF-A, B and proVEGF-C

    Get PDF
    BACKGROUND: Furin represents a crucial member of secretory mammalian subtilase, the Proprotein Convertase (PC) or Proprotein Convertase Subtilisin/Kexin (PCSK) superfamily. It has been linked to cancer, tumorgenesis, viral and bacterial pathogenesis. As a result it is considered a major target for intervention of these diseases. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we report, for the first time, the synthesis and biological evaluation of a newly designed potent furin inhibitor that contains a highly reactive beta-turn inducing and radical generating "enediynyl amino acid" (Eda) moiety. "Eda" was inserted between P1 and P1' residues of hfurin(98-112) peptide, derived from the primary cleavage site of furin's own prodomain. The resulting hexadecapeptide derivative inhibited furin in vitro with IC(50) approximately 40 nM when measured against the fluorogenic substrate Boc-RVRR-MCA. It also inhibited furin-mediated cleavage of a fluorogenic peptide derived from hSARS-CoV spike protein with IC(50) approximately 193 nM. Additionally it also blocked furin-processing of growth factors proPDGF-A, B and VEGF-C that are linked to tumor genesis and cancer. Circular dichroism study showed that this inhibitor displayed a predominantly beta-turn structure while western blots confirmed its ability to protect furin protein from self degradation. CONCLUSION/SIGNIFICANCE: These findings imply its potential as a therapeutic agent for intervention of cancer and other furin-associated diseases

    Emotional support, education and self-rated health in 22 European countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The analyses focus on three aims: (1) to explore the associations between education and emotional support in 22 European countries, (2) to explore the associations between emotional support and self-rated health in the European countries, and (3) to analyse whether the association between education and self-rated health can be partly explained by emotional support.</p> <p>Methods</p> <p>The study uses data from the European Social Survey 2003. Probability sampling from all private residents aged 15 years and older was applied in all countries. The European Social Survey includes 42,359 cases. Persons under age 25 were excluded to minimise the number of respondents whose education was not complete. Education was coded according to the International Standard Classification of Education. Perceived emotional support was assessed by the availability of a confidant with whom one can discuss intimate and personal matters with. Self-rated health was used as health indicator.</p> <p>Results</p> <p>Results of multiple logistic regression analyses show that emotional support is positively associated with education among women and men in most European countries. However, the magnitude of the association varies according to country and gender. Emotional support is positively associated with self-rated health. Again, gender and country differences in the association were observed. Emotional support explains little of the educational differences in self-rated health among women and men in most European countries.</p> <p>Conclusion</p> <p>Results indicate that it is important to consider socio-economic factors like education and country-specific contexts in studies on health effects of emotional support.</p

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    Subglacial lake drainage detected beneath the Greenland ice sheet

    Get PDF
    The contribution of the Greenland ice sheet to sea-level rise has accelerated in recent decades. Subglacial lake drainage events can induce an ice sheet dynamic response—a process that has been observed in Antarctica, but not yet in Greenland, where the presence of subglacial lakes has only recently been discovered. Here we investigate the water flow paths from a subglacial lake, which drained beneath the Greenland ice sheet in 2011. Our observations suggest that the lake was fed by surface meltwater flowing down a nearby moulin, and that the draining water reached the ice margin via a subglacial tunnel. Interferometric synthetic aperture radar-derived measurements of ice surface motion acquired in 1995 suggest that a similar event may have occurred 16 years earlier, and we propose that, as the climate warms, increasing volumes of surface meltwater routed to the bed will cause such events to become more common in the future
    corecore